Основы электростатического разряда
Многие люди сталкиваются с электростатическим разрядом (ESD) при прикосновении к металлической дверной ручке, при ходьбе по ковровому покрытию или при нахождении на автомобильном сидении.
Введение в ESD
Однако, статическое электричество и ESD – серьезные промышленные проблемы столетия. Еще в 1400-ых годах европейские и военные форты проводили испытания по контролю за ESD, пытаясь предотвратить непреднамеренное зажигание электростатическим разрядом пороховых складов. К 1860-ым годам фабрики по производству бумаги в США использовали оборудование заземления, ионизацию и увлажнение воздуха для рассеивания статического электричества. Рано или поздно любая производственная компания сталкивается с проблемой электростатического заряда.
Производство боеприпасов и взрывчатых веществ, нефтехимические и фармацевтические отрасли, типографии, производство тканей, картин и пластмассы – это те отрасли промышленности, где контроль статического электричества имеет существенное значение. Век электроники принес с собой новые проблемы, связанные со статическим электричеством и электростатическим разрядом. Кроме этого, электронные устройства постоянно совершенствуются, становясь быстрее, тоньше и компактнее, их чувствительность к ESD также увеличивается. И эта тенденция ускоряется. Компаниям нужно тщательно изучать возможности ESD своих процессов производства. Сегодня ESD влияет на производительность и надежность продукции практически во всех сферах глобальной электроники.
В течение последних 30 лет, несмотря на прилагаемые усилия, ESD все еще влияет на доход производства, производственные затраты, качество продукции, надежность продукции и рентабельность. Стоимость поврежденных устройств колеблются от нескольких копеек за простой диод до нескольких сотен тысяч рублей за сложные интегральные схемы. Если учесть затраты на ремонт и доработку, доставку, оплату труда и накладные расходы, то появятся возможности для проведения работ по созданию и улучшению зон, защищенных от ESD.
Большинство компаний, участвующих в производстве электроники, много внимания уделяют основам, принятым в отрасли элементов статического контроля. Стандарты ESD доступны сегодня, они являются фундаментом производителя для создания правил и методов контроля статического заряда. Маловероятно, что компания, игнорирующая статический контроль за ESD, сможет успешно изготовлять и производить неповрежденные электронные компоненты и оборудование.
Статическое электричество: создание заряда
Электростатический разряд (ESD) – быстрая, самопроизвольная передача электростатического заряда, вызванного электростатическим полем с высоким напряжением. Примечание: обычно заряд проходит через искру между двумя телами при различных электростатических потенциалах по мере их приближения друг к другу.
Электростатический разряд может влиять на электрические характеристики полупроводникового прибора, ухудшая или разрушая его. Электростатический разряд также может нарушить нормальное функционирование электронной системы, вызвав неисправность или сбой. Заряженные поверхности могут удерживать частицы грязи и пыли, которые вызывают трудности при очищении. Если пыль притягивается к поверхности кремниевой пластины, частицы могут вызывать дефект пластины, что может снизить производительность продукта.
Управление электростатическим разрядом начинается в первую очередь с понимания того, как он образуется. Электростатический заряд чаще всего создается контактом и разделением двух материалов. Материалы могут быть похожими или непохожими, хотя и разнородные материалы имеют тенденцию выделять статический заряд высокой мощности. Например, человек, идущий по полу производит статическое электричество по мере того как подошвы ботинок контактируют с полом, а после чего отделяются от поверхности пола.
Электронный компонент, который при упаковке или распаковке скользит по поверхности пакета, магазина или тубы, генерирует электростатический заряд, так как устройства создают контакты с металлом и с поверхностью контейнера. Величина электростатического заряда может быть различной в этих примерах, но статическое электричество формируется в каждом из этих случаев.
Рис. 1. Трибоэлектрический заряд. Пример контактирующих материалов.
Рис. 2. Трибоэлектрический заряд – разделение.
Создание электростатического заряда путем контакта материалов, а затем их разделением называется трибоэлектрический эффект. Слово «трибоэлектрический» происходит от греческого слова, tribo – значение «тереть» и elektros – означает «янтарь» (ископаемая окаменевшая смола доисторических деревьев). Она включает в себя перенос электронов между материалами. Атомы материала без статического заряда имеют равное количество положительных (+) протонов в ядре и отрицательных (-) электронов, вращающихся вокруг ядра. На Рис. 1 материал «А» состоит из атомов с равным числом протонов и электронов. Материал «B» также состоит из атомов с равным (хотя, возможно, различным) числом протонов и электронов. Оба материала электрически нейтральны.
Когда два материала контактируют, а затем разделяются, отрицательно заряженные электроны переносятся с поверхности одного материала на поверхность другого материала. Какой материал теряет электроны и какой получает электроны, будет зависеть от природы этих материалов. Материал, который теряет электроны, становится положительно заряженным, в то время как материал, который получает электроны, отрицательно заряжен. Это показано на рисунке 2.
Статическое электричество измеряется в кулонах. Заряд «q» на объекте определяется произведением емкости объекта «C» и потенциала напряжения на объекте (V):
q = CV
Однако мы говорим об электростатическом потенциале на объекте, который выражается как напряжение.
Этот процесс контакта материалов, переноса и разделение электронов представляет собой более сложный механизм, чем описан здесь. На количество заряда, создаваемого трибоэлектрической генерацией, влияют площадь контакта, скорость разделения, относительная влажность и взаимодействие материалов, рабочая поверхность и другие факторы. Как только заряд создается на материале, он становится электростатическим зарядом (если он остается на материале). Этот заряд может передаваться из материала – создание электростатического разряда или появления ESD. Дополнительные факторы, такие как сопротивление фактической разрядной цепи и контактное сопротивление на границе между контактирующими поверхностями, также влияют на фактический заряд, который высвобождается. Типичные сценарии генерации заряда и результирующие уровни напряжения показаны в Таблице 1. Кроме того, показано влияние влажности на уменьшение накопления заряда. Однако следует отметить, что статическая генерация заряда происходит даже при относительно высокой влажности.
Электростатический заряд также может быть создан на материале другими способами, такими как индукция, ионная бомбардировка или контакт с другим заряженным объектом. Однако трибоэлектрический эффект является наиболее распространенным.